반응형
목차
용어 정리
Population mean | μ = Σ ( Xi ) / N |
Population standard deviation | σ = sqrt [ Σ ( Xi – μ )^2 / N ] |
Population deviation | σ^2 = Σ ( Xi – μ )^2 / N |
Sample mean | ˉx = Σ ( Xi ) / n |
Sample standard deviation | s = sqrt [ Σ ( xi – ˉx )^2 / ( n – 1 ) ] |
Sample deviation | s^2 = Σ ( xi – ˉx )^2 / ( n – 1 ) |
Standard deviation 구하기
if, the sample data is
x= {4,8,9,4,5,3,2}
* sample mean
= ˉx
= Σ (Xi) / n
= 35 / 7
= 5
i | Xi | Xi-ˉx | (Xi-ˉx)^2 |
1 | 4 | 4 - 5 = -1 | (-1)^2 = 1 |
2 | 8 | 8 - 5 = 3 | (3)^2 = 9 |
3 | 9 | 9 - 5 = 4 | (4)^2 = 16 |
4 | 4 | 4 - 5 = -1 | (-1)^2 = 1 |
5 | 5 | 5 - 5 = 0 | (0)^2 = 0 |
6 | 3 | 3 - 5 = -2 | (-2)^2 = 4 |
7 (n=7) |
2 | 2 - 5 = -3 | (-3)^2 = 9 |
sum: | Σ (Xi) = 35 | Σ ( xi – ˉx ) = 0 *이건 항상 0 나와야 한다 |
Σ ( xi – ˉx )^2 = 40 |
* sample deviation
= s^2
= Σ ( xi – ˉx )^2 / ( n – 1 )
= 40 / (7 - 1)
= 40 / 6
= 6.667
*sample standard deviation
= s
= sqrt [ Σ ( xi – ˉx )^2 / ( n – 1 ) ]
= sqrt (6.667)
= 2.581
반응형
'Study Notes > Statistics' 카테고리의 다른 글
Normal Distributions (0) | 2022.11.25 |
---|---|
Probability 확률 (0) | 2022.10.21 |
Descriptive Statistics (0) | 2022.09.21 |
Statistics을 위한 중요한 Excel 용어 정리 (0) | 2022.09.16 |
1. Excel로 간단한 data 입력하고 정리하기 (0) | 2022.09.16 |
댓글